
ar
X

iv
:1

71
1.

05
41

2v
3 

 [
cs

.R
O

] 
 7

 D
ec

 2
01

7
1

IKBT: solving closed-form Inverse Kinematics
with Behavior Tree

Dianmu Zhang, Student Member, IEEE, and Blake Hannaford, Fellow, IEEE

Abstract—Serial robot arms have complicated kinematic equations which must be solved to write effective arm planning and control

software (the Inverse Kinematics Problem). Existing software packages for inverse kinematics often rely on numerical methods which

have significant shortcomings. Here we report a new symbolic inverse kinematics solver which overcomes the limitations of numerical

methods, and the shortcomings of previous symbolic software packages. We integrate Behavior Trees, an execution planning

framework previously used for controlling intelligent robot behavior, to organize the equation solving process, and a modular

architecture for each solution technique. The system successfully solved, generated a LaTex report, and generated a Python code

template for 18 out of 19 example robots of 4-6 DOF. The system is readily extensible, maintainable, and multi-platform with few

dependencies. The complete package is available with a Modified BSD license on Github.

Index Terms—AI Reasoning Methods, Behavior Tree, Kinematics

✦

1 INTRODUCTION

S YMBOLIC inverse kinematics analysis is a non-trivial task
critical for operation and design of robot manipulators.

Considering here serial non-redundant chains of up to six
degrees of freedom, the inverse kinematics computation
takes the desired end-effector pose as input (typically as a
homogeneous transform), and solves for joint angles or joint
displacements from the forward kinematic equations.

While there are many existing packages for numerical
inverse kinematics [1] [2], these share common limitations
including, finding only one of the multiple solutions, re-
quirement of a starting value, dependence on the starting
value, and problems with convergence near singular config-
urations.

Several groups have attempted to automate symbolic in-
verse kinematics analysis starting in the 1990’s [3] [4], which
laid the foundation for our work. Their work is reviewed
and compared with ours in detail in the Discussion section.

In this work we develop an automated symbolic inverse
kinematics package with the following goals:

• Create a highly extensible and modifiable architec-
ture using a flexible behavior tree for solution logic
and a modular design.

• Provide convenience features such as automatic doc-
umentation and code generation.

• Implementation in a modern open-source, cross-
platform, programming language (Python)

• Require minimal dependencies outside of the stan-
dard Python distribution (mainly the symbolic ma-
nipulation package sympy).

Unlike others’ work that mostly used a linear and in-
flexible method, we adapt Behavior Tree - popular in video
game AI - to construct an expert system, “IKBT”, that has the

• D. Zhang and B. Hannaford are with the Department of Electrical
Engineering, University of Washington, Seattle, WA, 98052.
E-mail: blake@uw.edu

logical reasoning power to solve inverse kinematics symbol-
ically without human supervision. A Behavior Tree uses a
directed graph to model intelligent agent behavior [5], [6],
[7], [8]. Behavior Trees have the advantages of composability
and scalability compared to finite state machines.

The main contributions of this work are:

• We compactly encode the inverse kinematics logic
and strategy in a Behavior Tree (see Work Flow and
Architecture section).

• We code each knowledge-based solver into a modu-
lar leaf, forming a “tool box” which is organized by
the Behavior Tree (see Transformations and Solvers
section).

• IKBT generates a dependency graph of joint variables
in the solutions, includes all possible poses. Track-
ing these dependencies facilitates grouping variables
into distinct solutions, essential to downstream con-
trol softwares for robots (see Solution Graph section).

• IKBT successfully solves complicated robots, such as
the 6-DOF commercial robot manipulator PUMA 560
and successfully solved 18 out of 19 test robots (95%
success rate) (see Results section).

• On average, IKBT generates symbolic solutions and
source code in a few minutes on a normal PC. The
same work load often takes a human expert hours to
complete.

• IKBT generates a report of its results in LATEX, and
generates code in Python and C++ creating functions
to implement the derived solutions with domain
(reachability) checking of numerical inputs(see Pose
Validation section).

• Inverse kinematics solutions from IKBT are verifiable
with numerical values(see Result Verification subsec-
tion under Results).

http://arxiv.org/abs/1711.05412v3


2

Fig. 1. Work Flow. Forward kinematics module computes symbolic kine-
matic equations to be solved (Td = Ts) given the input DH parameters.
Then the equations are evaluated for closed-form inverse kinematics
solutions to each joint variable. Upon solving a robot, along with the
solutions, a dependency graph, Latex report, and Python/C++ code are
generated as convenience feature.

2 WORK FLOW AND ARCHITECTURE

2.1 Work Flow

As shown in Fig. 1, the system input takes symbolic
Denavit–Hartenberg (DH) parameters and calculates sym-
bolic forward kinematic equations in the form of a 4x4
homogeneous transformation. For a 6-DOF robot, the trans-
formation matrix T 6

0
is computed as

Ts = T 6

0
= T 1

0
T 2

1
T 3

2
T 4

3
T 5

4
T 6

5
(1)

By convention, each transformation matrix takes a co-
ordinate from the subscript frame and transforms it to the
superscript frame (T 6

0 transforms from frame 0 to frame 6).
We denote the desired robot end effector pose as Td.

Then the inverse kinematics problem can be stated as solv-
ing

Td = T 6

0
(q1, . . . , q6) (2)

(where qi are the unknown joint variables) for all sets of joint
variables (qi = θi or di) which satisfy 2. Related equations
which can be used to find soluble equations include:

[T 1

0
]−1Td = [T 1

0
]−1Ts (3)

[T 2

1
]−1[T 1

0
]−1Td = [T 2

1
]−1[T 1

0
]−1Ts (4)

[T n−1

n−2
]−1...[T 1

0 ]
−1Td = [T 5

4 ]
−1...[T 1

0 ]
−1Ts (5)

IKBT first symbolically calculates and simplifies these
intermediate results (3 - 5) to augment (1). Each of these
matrix equations creates 12 scalar equations (one for each
element in the first three rows) which can be searched for
solvable equations. After generating these matrices, each
scalar equation is categorized by the number of unsolved
joint variables, qi, into three lists according to the number
of unsolved variables in each equation (1, 2, and 3-or-more
unknowns). As each variable is solved, this scan is repeated.
The current toolbox examines equations containing 1- and
2-unsolved variables.

The Behavior Tree’s leaf nodes transform, or identify and
solve, a particular kind of equation (See detail in the fol-
lowing section ”Transforms and Solvers”). For example, one
pair of nodes identifies and solves scalar equations of one-
unknown of the form A = sin(Bθj+C) or A = cos(Bθj+C)
where A,B,C are known expressions, and θj is unknown.

After all joint variables are solved, the solution graph
and the solution vectors (2n joint vectors in symbolic form
correctly associating the multiplicity of each variable) are
constructed. A LATEXreport, C++ and Python code, con-
taining symbolic solutions for all possible poses, is also
generated.

2.2 Architecture

Behavior Trees have been explored in the context of hu-
manoid robot control [6], [9], [10], collaborative robotics
[8], [11], and as a modeling language for intelligent robotic
surgical procedures [12], [13].

The work reported here is the first to our knowledge to
use Behavior Trees to encode algorithms for reasoning about
and solving mathematical equations symbolically. When
implementing intelligent behavior with Behavior Trees, the
designer of a robotic control system breaks the task down
into modules (Behavior Tree leaves) which return either
“success” or “failure” when called by parent nodes. Higher
level nodes define composition rules to combine the leaves
including: Sequence, Selector, and Parallel node types which
also return “success” or “failure”. A Sequence node defines
the order of execution of leaves and returns success if all
leaves succeed in order. A Selector node (called “Priority”
by some authors) tries leaf behaviors in a fixed order,
returns success when a node succeeds, and returns failure
if all leaves fail. We also implemented a “Parallel” node
(represented as “OR” in Fig. 2), which executes all leaves
regardless of their return status, and returns success if any
one of the leaves succeeds. The IKBT structure used for our
current results is shown in Fig.2.

Before solving, IKBT looks through 1- and 2- unknown
equation lists, and applies sum-of-angle and substitution
transformations which may reduce number of unknown
variables. The “Assigner” node assigns the current variable
to all solvers. For each joint variable, it tries out all solvers in
the toolbox until it is solved (or we reach the maximum trial
number). When a joint variable is solved, the solver marks it
as solved, and reduces the number of unsolved variables by
one, for all equations involved this variable. When multiple
solvers can solve a joint variable, the solutions are compared
using a “Ranker” node which selects preferred solution
forms over others. For example, θ4 =atan2(y, x) is preferred
over θ4 = arcsin(y/r) because it has only one solution.
IKBT repeats this until all variables are solved. Finally the
solutions, report, code generation, and dependency graph
are generated.

3 TRANSFORMATIONS AND SOLVERS

In the following subsections, θi and di represent rotatory
and prismatic joint variables (qi). a, b, c, etc., stand for
known constant DH parameters.

3.1 Transformations

Transformation nodes make equations easier to solve by
reducing the number of unknown variables.

1) Sum of angle transform

sin(θx ± θy) → sin(θxy)



3

Fig. 2. IKBT Structure. Node type explanation: Action nodes (leaves) carry out specific tasks, and returns SUCCESS or FAILURE.Succeeder is a
special type of action nodes that only returns SUCCESS. Selector node ticks its children in turn, returns SUCCESS and stops if one of the children
succeeds, otherwise returns FAILURE. Sequence node only returns SUCCESS if all its children succeed. Parallel node tries out all its children
regardless of their return status, returns SUCCESS if any child succeeds.

cos(θx ± θy) → cos(θxy)

Although the sum-of-angle simplification is done
by sympy’s simplify operation, creation of a new
variable (θxy) is done by this node.

2) Substitution transform: looks for two equations
such that one contains the other, and replaces the
partial expression with a unknown value. For ex-
ample, the following pair of equations:

sin(θx) + a · cos(θy) = b

a · cos(θy) = c

The first equation is transformed to:

sin(θx) + c = b

Eliminating one unknowns so that θx can be solved.

3.2 Rule-based Solvers

The IKBT contains a set of solvers that identifies an expres-
sion that fits a rule set and return the respective solutions.
These rules are used by human experts when solving in-
verse kinematics problems, and not are specific to any DOF
or robot configuration.

1) algebraic solver
Identifies pattern

a+ bθ = c

where b 6= 0. Solves for

θ =
c− a

b

as well as

a+ bdx = c



4

giving

dx =
c− a

b

2) sine or cosine solver
Identifies pattern

sin(θ) = a, cos(θ) = b

Solves for

θ = arcsin(a), θ = arccos(b)

or

θ = π − arcsin(a), θ = − arccos(b)

3) tangent solver
identifies a pattern in two equations containing

sin(θ) = aC1 and cos(θ) = bC2

If neither C1 or C2 contain unsolved variables:

θ = atan2(
a

C1

,
b

C2

)

Sometimes C1 and C2 contain common unsolved
variables, which can be canceled out by division. In
this case we use a new coefficient C:

C =
C1

C2

θ = atan2(
a

C
, b) C > 0

θ = atan2(− a

C
,−b) C < 0

Terms which are solvable by tangent solver are often
also solvable by sine or cosine solver. As shown in
Fig 2, IKBT takes this into consideration by compar-
ing the solutions from the above-mentioned solvers,
and determines the optimal solution. This selection
is done by the Ranking node.

4) Sine and cosine solver
Identifies

a · sin(θ) + b · cos(θ) = 0

giving

θ = atan2(−b, a), θ = atan2(−b, a) + π

as well as

a · sin(θ) + b · cos(θ) = c

giving

θ = atan2(a, b) + atan2(±
√

a2 + b2 − c2, c)

5) Simultaneous equation solver [3] Identifies two
equations:

a sin(θ) + b cos(θ) = c a cos(θ) − b sin(θ) = d

Giving the solution:

θ = atan2(ac− bd, ad+ bc)

6) x2y2 solver

Identifies two equations that contain Px, Py , and/or
Pz , that can be squared and added together to cancel
out unsolved variables (other than the intended
variable), and get a new equation with pattern [14] :

− sin(θ)Px + cos(θ)Py = d

Giving solutions:

θ = atan2(Py, Px)− atan2(d,±
√

Px
2 + Py

2 − d2)

4 SOLUTION GRAPH

4.1 Origins of Dependency

The solutions produced by inverse kinematics are typically
interdependent in that results obtained early in the process
are used to solve later results. For example, one may have

θ4 = asin

(

1

l4
(Pz − l3 + l5 cos (θ45))

)

in which θ4 depends on cos(θ45) = cos(θ4 + θ5) as well
as some constants. In principle, it is possible to substitute
these dependencies until there are no joint variables on
the right hand side, but this makes the solutions difficult
to compare with previously published hand solutions. In
the above example, there are two solutions to the asin()
operator, and additional multiplicity could come from the
solution method for θ45.

Thus the two sources of multiple solutions are: A) each
joint variable may have multiple solutions due to its solver’s
characteristic; and B) dependence of the solution on other
solved joint variables. For example,

cos(θ1) = a (6)

θ1 =

{

θ1s1 = acos(a)
θ1s2 = − acos(a)

(where we have used the subscript s to separate joint
numbers from solution numbers. For example, θ1s2 means
solution 2 of θ1). Now that θ1 is solved, we can write

sin(θ2) + sin(θ1) = b (7)

θ2 =











θ2s1 = arcsin(b− sin(θ1s1))
θ2s2 = π − arcsin(b− sin(θ1s1))
θ2s3 = arcsin(b− sin(θ1s2))
θ2s4 = π − arcsin(b− sin(θ1s2))

In the resulting graph (shown in Fig. 3 a), each joint
solution (e.g. θ2s1, θ2s2, etc.) is a node. A parent node is the
node that appears in another node’s solution expressions,
in this example, θ1s1 is the parent of θ2s2 . A node and its
parent/child node are connected with an edge.

4.2 Redundancy Detection and Dependency Tracking

When building a dependency graph, we implemented re-
dundancy elimination to ensure the correct relations be-
tween joint variables. Redundancy is defined as a depen-
dency that traced back to a higher level parent can be
mediated by a lower level and direct parent. If a joint
variable θ6 has the following solution:

θ6 = atan2(a+ cos(th4), sin(th5)b)



5

And θ5 has solution:

θ5 = arccos(l + cos(θ4))

Though the solution of θ6 involves both θ4 and θ5,
its dependency to θ4 is redundant. Given that θ5 is also
dependent on θ4, the effects of choosing different θ4 values
(if applicable) on θ6 are conveyed through θ5. Therefore,
when building a graph, only the edges between direct
child-parents are added, in this case, Edge (θ6, θ5) and
Edge(θ5, θ4). Shown in Fig. 3 b).

Classical search algorithms (breadth-first search and
depth-first search) are used to traverse the graph and find
correct ancestor nodes, where the current variable is the start
point and the ancestors are the goals.

4.3 Grouping Variables

As required by many planning and control softwares, IKBT
is capable of grouping variables into solution sets that have
all possible joint configurations for the given end-effector
configuration. To generate correct sets of solutions, the fol-
lowing steps are carried out to match the variables: First, all
parents nodes are extracted from each solution expression,
and formed subsets of variables. Secondly, the subsets are
sorted by size of their content. Search starts from the largest
subsets, and looks for the variables that are a part of the
joint space, but not in the set, till all variables are found.
A scoring system is applied on all subsets (other than the
starting set) to focus the search on the more likely candidate
first.

Using the Fig. 3 a) as an example, the solutions can be
grouped into: [θ1s1, θ2s1], [θ1s1, θ2s2], [θ1s2, θ2s3], and [θ1s2,
θ2s4].

4.4 Graph Representation

The multiple dependencies can be linked by a common de-
pendency further up, or they can be independent. Although
traditionally this structure is represented as a tree, we dis-
covered cases in which variables have multiple independent
“parents” and thus a graph is required instead.

For example, θ1 and θ2 are independent to each other:

θ1s1 =arcsin(a)

θ1s2 =− arcsin(a) + π

θ2s1 =arccos(b)

θ2s2 =− arccos(b)

And θ3 depends on both θ1 and θ2:

θ3s1 =arccos(a+ cos(θ1s1) + atan2(b, sin(θ2s1)c)

θ3s2 =arccos(a+ cos(θ1s1) + atan2(b, sin(θ2s2)c)

θ3s3 =arccos(a+ cos(θ1s2) + atan2(b, sin(θ2s1)c)

θ3s4 =arccos(a+ cos(θ1s2) + atan2(b, sin(θ2s2)c)

The dependency graph is shown in Fig. 3 c).
One example robot solution in Results section shows the

necessity of using graph representation.

Fig. 3. Sample Solution Graph. a) Simple example solution graph
explains the origins of multiplicity. b) Redundancy pruning, ’x’ marks the
dependent relations that are not included in the graph. c) Example of a
case of variables with multiple independent parents.

5 VERIFICATION

5.1 Solution Verification

To prove that the inverse kinematics solution equations from
IKBT are correct, we conducted the following verification
process, as shown in Fig. 4 . First, we constructed a valid
numerical transformation matrix from a reachable pose.
Then used numbers from the transformation matrix and the
inverse kinematics solutions equations to get the numerical
values for each pose. If the inverse kinematics solutions are
correct, one of the poses should match the starting pose
value. Next, compute the forward kinematics using each
numerical pose. If the resulted transformation matrix is the
same (within a stringent range) as the starting matrix, then
we can safely draw the conclusion that this pose has correct
inverse kinematics solution.



6

Fig. 4. Result Verification. A numerical 4x4 homogeneous transformation matrix, Td, is constructed from a reachable pose. Numerical joint space
poses are computed from Td using the closed-form solutions. For each solution pose, forward kinematics is calculated. The resulting transform
matrices are compared against the original matrix, matching value is indicative of correct IKBT inverse kinematics analysis.

5.2 Pose Validation

If a pose is not reachable by the robot (for example due
to distance of a point extending beyond the length of the
arm, but not considering joint limits), at least in generated
code output, the solution must have a means to detect this
case. In inverse kinematic solution equations, unreachable
poses generate intermediate values outside the domain of
transcendental functions, for example:

θ2 = arcsin(x) x = 1.2

or would require complex joint angles:

d3 =
√
x x = −5

Both the C++ and Python output modules of IKBT
generate code which checks numerical arguments of inverse
trig functions and square roots for such cases and returns a
flag to indicate an unreachable pose.

6 RESULTS

6.1 General performance

We tested IKBT on many sets of DH parameters, represent-
ing serial arm robot designs (including commercial robots,
and solved design examples from student homework), the
successful solving rate is listed in Table 1. As the DOF
number increases, the problem becomes more complex and
the success rate decreases. In general it solves most of
the robots, up to 6 DOF. Note that IKBT can solve robots
regardless of their configurations, e.g. IKBT does not require
robots having three intersecting axes.

Source code can be found at:
https://github.com/uw-biorobotics/IKBT. The DH
parameters of all these robots are stored as part of the

source code (in ik_robots.py), for purpose of testing
and reproducing the results. Instructions are on the GitHub
page.

6.2 Sample solutions PUMA 560

Here PUMA560 is used as an example to illustrate how
IKBT solves inverse kinematics problems. PUMA 560 was
a commercial robot with six rotary joints and four joint
offsets, well-known for its challenging inverse kinematics
properties. The PUMA 560 has three axes intersecting at its
wrist. The known variables are: a2, a3, d3, and d4.

First forward kinematics was calculated from DH pa-
rameters:

Td = Ts

T 6

0 = T 1

0 T
2

1 T
3

2 T
4

3 T
5

4 T
6

5

(where Td is the “desired position”, Ts symbolic expres-
sions, T 6

0 transformation matrix from frame 0 to 6)

T 6

0
=







r11 r12 r13 Px

r21 r22 r23 Py

r31 r32 r33 Pz

0 0 0 1






=

[

v1 v2 v3 v4
]

number of DOF Test examples Solved
4 4 4
5 10 10
6 5 4

TABLE 1
IKBT test results

https://github.com/uw-biorobotics/IKBT


7

TABLE 2
PUMA560 DH parameters

Link αN−1 aN−1 dN θN
1 0 0 0 θ1
2 −π/2 0 0 θ2
3 0 a2 d3 θ3
4 −π/2 a3 d4 θ4
5 π/2 0 0 θ5
6 −π/2 0 0 θ6

v1 =






c6(−c1s23s5 + c5(c1c23c4 + s1s4))− s6(c1c23s4 − c4s1)
c6(c5(−c1s4 + c23c4s1)− s1s23s5)− s6(c1c4 + c23s1s4)

−c6(c23s5 + c4c5s23) + s23s4s6
0







v2 =






−c6(c1c23s4 − c4s1)− s6(−c1s23s5 + c5(c1c23c4 + s1s4))
−c6(c1c4 + c23s1s4)− s6(c5(−c1s4 + c23c4s1)− s1s23s5)

c6s23s4 + s6(c23s5 + c4c5s23)
0







v3 =







−c1c5s23 − s5(c1c23c4 + s1s4)
−c5s1s23 − s5(−c1s4 + c23c4s1)

−c23c5 + c4s23s5
0







v4 =







a2c1c2 + a3c1c23 − c1d4s23 − l3s1
a2c2s1 + a3c23s1 + c1l3 − d4s1s23

−a2s2 − a3s23 − c23d4
1







where c1 = cos(θ1), s23 = sin(θ2 + θ3) etc.
IKBT solved these variables in the following order:

1) θ1, chosen solver: sinANDcos

θ1s1 =atan2 (Px,−Py)+

atan2 (
√

Px2 + Py2 − d2
3
,−d3)

θ1s2 =atan2 (Px,−Py)+

atan2 (−
√

Px2 + Py2 − d2
3
,−d3)

2) θ3, chosen solver: x2y2

θ3s1 = atan2 (−2a2d4, 2a2a3)+

atan2(
√

s− (t+ (Px cos (θ1s1) + Py sin (θ1s1))2)2,

t+ (Px cos (θ1s1) + Py sin (θ1s1))
2)

θ3s2 = atan2 (−2a2d4, 2a2a3)+

atan2(−
√

s− (t+ (Px cos (θ1s1) + Py sin (θ1s1))2)2,

t+ (Px cos (θ1s1) + Py sin (θ1s1))
2)

θ3s3 = atan2 (−2a2d4, 2a2a3)+

atan2(
√

s− (t+ (Px cos (θ1s2) + Py sin (θ1s2))2)2,

t+ (Px cos (θ1s2) + Py sin (θ1s2))
2)

θ3s4 = atan2 (−2a2d4, 2a2a3)+

atan2(−
√

s− (t+ (Px cos (θ1s2) + Py sin (θ1s2))2)2,

t+ (Px cos (θ1s2) + Py sin (θ1s2))
2)

where,

s =4a2
2
a2
3
+ 4a2

2
d2
4

t =Pz2 − a22 − a23 − d24

3) θ23, chosen solver: simultaneous equation

θ23s1 = atan2(Pz(−a2 cos (θ3s3)− a3)−
(−Px cos (θ1s2)−
Py sin (θ1s2))(a2 sin (θ3s3)− d4),

P z(a2 sin (θ3s3)− d4)+

(−Px cos (θ1s2)− Py sin (θ1s2))

(−a2 cos (θ3s3)− a3))

θ23s2 = atan2(Pz(−a2 cos (θ3s2)− a3)−
(−Px cos (θ1s1)−
Py sin (θ1s1))(a2 sin (θ3s2)− d4),

P z(a2 sin (θ3s2)− d4)+

(−Px cos (θ1s1)− Py sin (θ1s1))

(−a2 cos (θ3s2)− a3))

θ23s3 = atan2(Pz(−a2 cos (θ3s1)− a3)−
(−Px cos (θ1s1)−
Py sin (θ1s1))(a2 sin (θ3s1)− d4),

P z(a2 sin (θ3s1)− d4)+

(−Px cos (θ1s1)− Py sin (θ1s1))

(−a2 cos (θ3s1)− a3))

θ23s4 = atan2(Pz(−a2 cos (θ3s4)− a3)−
(−Px cos (θ1s2)−
Py sin (θ1s2))(a2 sin (θ3s4)− d4),

P z(a2 sin (θ3s4)− d4)+

(−Px cos (θ1s2)− Py sin (θ1s2))

(−a2 cos (θ3s4)− a3))

4) θ2, chosen solver: algebraic solver

θ2s1 = θ23s2 − θ3s2

θ2s2 = θ23s4 − θ3s4

θ2s3 = θ23s1 − θ3s3

θ2s4 = θ23s3 − θ3s1



8

5) θ4, chosen solver: tangent

θ4s1 = atan2(r13 sin (θ1s1)− r23 cos (θ1s1),

r13 cos (θ1s1) cos (θ23s2)+

r23 sin (θ1s1) cos (θ23s2)− r33 sin (θ23s2))

θ4s2 = atan2(−r13 sin (θ1s1) + r23 cos (θ1s1),

− r13 cos (θ1s1) cos (θ23s2)−
r23 sin (θ1s1) cos (θ23s2) + r33 sin (θ23s2))

θ4s3 = atan2(r13 sin (θ1s2)− r23 cos (θ1s2),

r13 cos (θ1s2) cos (θ23s4)+

r23 sin (θ1s2) cos (θ23s4)− r33 sin (θ23s4))

θ4s4 = atan2(−r13 sin (θ1s2) + r23 cos (θ1s2),

− r13 cos (θ1s2) cos (θ23s4)−
r23 sin (θ1s2) cos (θ23s4) + r33 sin (θ23s4))

θ4s5 = atan2(r13 sin (θ1s2)− r23 cos (θ1s2),

r13 cos (θ1s2) cos (θ23s1)+

r23 sin (θ1s2) cos (θ23s1)− r33 sin (θ23s1))

θ4s6 = atan2(−r13 sin (θ1s2) + r23 cos (θ1s2),

− r13 cos (θ1s2) cos (θ23s1)−
r23 sin (θ1s2) cos (θ23s1) + r33 sin (θ23s1))

θ4s7 = atan2(r13 sin (θ1s1)− r23 cos (θ1s1),

r13 cos (θ1s1) cos (θ23s3)+

r23 sin (θ1s1) cos (θ23s3)− r33 sin (θ23s3))

θ4s8 = atan2(−r13 sin (θ1s1) + r23 cos (θ1s1),

− r13 cos (θ1s1) cos (θ23s3)−
r23 sin (θ1s1) cos (θ23s3) + r33 sin (θ23s3))

6) θ5, chosen solver: tangent

θ5s1 = atan2(
1

sin (θ4s3)
(−r13 sin (θ1s2)+

r23 cos (θ1s2)),−r13 sin (θ23s4) cos (θ1s2)−
r23 sin (θ1s2) sin (θ23s4)− r33 cos (θ23s4)

θ5s2 = atan2(
1

sin (θ4s7)
(−r13 sin (θ1s1)+

r23 cos (θ1s1)),−r13 sin (θ23s3) cos (θ1s1)−
r23 sin (θ1s1) sin (θ23s3)− r33 cos (θ23s3))

θ5s3 = atan2(
1

sin (θ4s2)
(−r13 sin (θ1s1)+

r23 cos (θ1s1)),−r13 sin (θ23s2) cos (θ1s1)−
r23 sin (θ1s1) sin (θ23s2)− r33 cos (θ23s2))

θ5s4 = atan2(
1

sin (θ4s6)
(−r13 sin (θ1s2)+

r23 cos (θ1s2)),−r13 sin (θ23s1) cos (θ1s2)−
r23 sin (θ1s2) sin (θ23s1)− r33 cos (θ23s1))

θ5s5 = atan2(
1

sin (θ4s4)
(−r13 sin (θ1s2)+

r23 cos (θ1s2)),−r13 sin (θ23s4) cos (θ1s2)−
r23 sin (θ1s2) sin (θ23s4)− r33 cos (θ23s4))

θ5s6 = atan2(
1

sin (θ4s1)
(−r13 sin (θ1s1)+

r23 cos (θ1s1)),−r13 sin (θ23s2) cos (θ1s1)−
r23 sin (θ1s1) sin (θ23s2)− r33 cos (θ23s2))

θ5s7 = atan2(
1

sin (θ4s8)
(−r13 sin (θ1s1)+

r23 cos (θ1s1)),−r13 sin (θ23s3) cos (θ1s1)−
r23 sin (θ1s1) sin (θ23s3)− r33 cos (θ23s3))

θ5s8 = atan2(
1

sin (θ4s5)
(−r13 sin (θ1s2)+

r23 cos (θ1s2)),−r13 sin (θ23s1) cos (θ1s2)−
r23 sin (θ1s2) sin (θ23s1)− r33 cos (θ23s1))

7) θ6, chosen solver: tangent

θ6s1 = atan2(− 1

sin (θ5s4)
(−r12 sin (θ23s1) cos (θ1s2)−

r22 sin (θ1s2) sin (θ23s1)− r32 cos (θ23s1)),

1

sin (θ5s4)
(−r11 sin (θ23s1) cos (θ1s2)−

r21 sin (θ1s2) sin (θ23s1)− r31 cos (θ23s1)))

θ6s2 = atan2(− 1

sin (θ5s8)
(−r12 sin (θ23s1) cos (θ1s2)−

r22 sin (θ1s2) sin (θ23s1)− r32 cos (θ23s1)),

1

sin (θ5s8)
(−r11 sin (θ23s1) cos (θ1s2)−

r21 sin (θ1s2) sin (θ23s1)− r31 cos (θ23s1)))

θ6s3 = atan2(− 1

sin (θ5s1)
(−r12 sin (θ23s4) cos (θ1s2)−

r22 sin (θ1s2) sin (θ23s4)− r32 cos (θ23s4)),

1

sin (θ5s1)
(−r11 sin (θ23s4) cos (θ1s2)−

r21 sin (θ1s2) sin (θ23s4)− r31 cos (θ23s4)))

θ6s4 = atan2(− 1

sin (θ5s2)
(−r12 sin (θ23s3) cos (θ1s1)−

r22 sin (θ1s1) sin (θ23s3)− r32 cos (θ23s3)),

1

sin (θ5s2)
(−r11 sin (θ23s3) cos (θ1s1)−

r21 sin (θ1s1) sin (θ23s3)− r31 cos (θ23s3)))

θ6s5 = atan2(− 1

sin (θ5s6)
(−r12 sin (θ23s2) cos (θ1s1)−

r22 sin (θ1s1) sin (θ23s2)− r32 cos (θ23s2)),

1

sin (θ5s6)
(−r11 sin (θ23s2) cos (θ1s1)−

r21 sin (θ1s1) sin (θ23s2)− r31 cos (θ23s2)))



9

θ6s6 = atan2(− 1

sin (θ5s3)
(−r12 sin (θ23s2) cos (θ1s1)−

r22 sin (θ1s1) sin (θ23s2)− r32 cos (θ23s2)),

1

sin (θ5s3)
(−r11 sin (θ23s2) cos (θ1s1)−

r21 sin (θ1s1) sin (θ23s2)− r31 cos (θ23s2)))

θ6s7 = atan2(− 1

sin (θ5s7)
(−r12 sin (θ23s3) cos (θ1s1)−

r22 sin (θ1s1) sin (θ23s3)− r32 cos (θ23s3)),

1

sin (θ5s7)
(−r11 sin (θ23s3) cos (θ1s1)−

r21 sin (θ1s1) sin (θ23s3)− r31 cos (θ23s3)))

θ6s8 = atan2(− 1

sin (θ5s5)
(−r12 sin (θ23s4) cos (θ1s2)−

r22 sin (θ1s2) sin (θ23s4)− r32 cos (θ23s4)),

1

sin (θ5s5)
(−r11 sin (θ23s4) cos (θ1s2)−

r21 sin (θ1s2) sin (θ23s4)− r31 cos (θ23s4)))

IKBT can find all 8 positions of PUMA 560, and the solution
graph shows the dependency among variables in Fig. 5. And
these joint poses can be grouped into sets:

Pose 1 :[θ1s1, θ2s4, θ3s1, θ4s8, θ5s7, θ6s7]

Pose 2 :[θ1s2, θ2s2, θ3s4, θ4s4, θ5s5, θ6s8]

Pose 3 :[θ1s1, θ2s1, θ3s2, θ4s2, θ5s3, θ6s6]

Pose 4 :[θ1s2, θ2s3, θ3s3, θ4s6, θ5s4, θ6s1]

Pose 5 :[θ1s2, θ2s3, θ3s3, θ4s5, θ5s8, θ6s2]

Pose 6 :[θ1s1, θ2s1, θ3s2, θ4s1, θ5s6, θ6s5]

Pose 7 :[θ1s1, θ2s4, θ3s1, θ4s7, θ5s2, θ6s4]

Pose 8 :[θ1s2, θ2s2, θ3s4, θ4s3, θ5s1, θ6s3]

6.2.1 Result Verification

To verify the solution, we followed the process stated in
section 5.1. The starting pose used is:

θ1 = 30◦, θ2 = 50◦, θ3 = 40◦,

θ4 = 45◦, θ5 = 120◦, θ6 = 60◦

as well as the parameters:

a2 = 5, a3 = 1, d3 = 2, d4 = 4

We got numerical T matrix:

Td =







−0.15720 0.97938 0.12682 −1.68074
−0.59374 −0.19635 0.78032 1.33902
0.78914 0.04737 0.61237 −4.83022

0 0 0 1







We then plug these numbers into symbolic solutions
obtained from last section, and get poses listed in Table 3.
Specifically, Pose 7 is considered the same as initial input
pose, with differences < 10−4.

With the numerical poses, we computed forward kine-
matics for each pose. T matrix computed from Pose 1 is
selected as example, as it shows the largest variation com-
pared to the original T matrix:







−0.15720 0.97939 0.12682 −1.68075
−0.59374 −0.19634 0.78033 1.33902
0.78915 0.04737 0.61237 −4.83025

0 0 0 1







We got the same values compared to the original T
matrix for all solution poses, with differences ≈ 10−5. This
result unequivocally proves that IKBT’s symbolic inverse
kinematics analysis is correct.

6.3 Example Solution - Robot without 3 intersecting

axes

Previous software packages which perform inverse kine-
matics analysis usually require the robot to have three inter-
secting axes (such as the popular ROS package). To demon-
strate IKBT’s flexibility in handling robots with different
configurations. We select the example of “Chair Helper”,
a 5 DOF robot without three intersecting axes (Table 4)1.

Forward kinematics:







r11 r12 r13 Px
r21 r22 r23 Py
r31 r32 r33 Pz
0 0 0 1






=

[

v1 v2 v3 v4
]

v1 =







−c2s3s5 + c5(c2c3c4 + s2s4)
c5(−c2s4 + c3c4s2)− s2s3s5

c3s5 + c4c5s3
0







v2 =







−c2c5s3 − s5(c2c3c4 + s2s4)
−c5s2s3 − s5(−c2s4 + c3c4s2)

c3c5 − c4s3s5
0







v3 =







−c2c3s4 + c4s2
−c2c4 − c3s2s4

−s3s4
0







v4 =







l1 + l2s2 + l4(−c2c3s4 + c4s2)
−c2c4l4 − c2l2 − c3l4s2s4

d1 − l4s3s4
1







Inverse kinematics solutions:

1) d1, chosen solver: algebra

d1 = Pz − l4r33

2) θ2, chosen solver: sine or cosine

θ2s1 = asin

(

1

l2
(Px− l1 − l4r13)

)

θ2s2 = − asin

(

1

l2
(Px− l1 − l4r13)

)

+ π

1. Thanks to Prof. Melanie Shoemaker Plett.



10

Fig. 5. PUMA 560 Solution Graph.

Solution Poses
Pose θ1 θ2 θ3 θ4 θ5 θ6

1 -287.08771 130.00008 -191.92745 -6.78054 -66.24462 4.13687
2 29.99995 49.99992 39.99994 -135.00007 -119.99981 -120.00010
3 29.99995 148.48625 -191.92745 142.01103 95.78709 -151.06756
4 -287.08771 31.51375 39.99994 18.00641 159.53838 18.33206
5 -287.08771 130.00008 -191.92745 173.21946 66.24462 -175.86313
6 29.99995 148.48625 -191.92745 -37.98897 -95.78709 28.93244
7 29.99995 49.99992 39.99994 44.99993 119.99981 59.99990
8 -287.08771 31.51375 39.99994 -161.99359 -159.53838 -161.66794

TABLE 3
Puma 560 Numerical Solutions

TABLE 4
Chair Helper DH parameters

Link αN−1 aN−1 dN θN
1 0 0 d1 0
2 0 l1 0 θ2
3 π/2 0 l2 θ3
4 π/2 0 0 θ4
5 - π/2 0 l4 θ5

3) θ3, chosen solver: tangent

θ3s1 = atan2 (r33, r13 cos (θ2s2) + r23 sin (θ2s2))

θ3s2 = atan2 (−r33,−r13 cos (θ2s2)− r23 sin (θ2s2))

θ3s3 = atan2 (r33, r13 cos (θ2s1) + r23 sin (θ2s1))

θ3s4 = atan2 (−r33,−r13 cos (θ2s1)− r23 sin (θ2s1))

4) θ4, chosen solver: tangent

θ4s1 =atan2(− r33
sin (θ3s3)

,

r13 sin (θ2s1)− r23 cos (θ2s1))

θ4s2 =atan2(− r33
sin (θ3s2)

,

r13 sin (θ2s2)− r23 cos (θ2s2))

θ4s3 =atan2(− r33
sin (θ3s1)

,

r13 sin (θ2s2)− r23 cos (θ2s2))

θ4s4 =atan2(− r33
sin (θ3s4)

,

r13 sin (θ2s1)− r23 cos (θ2s1))



11

5) θ5, chosen solver: tangent

θ5s1 =atan2(
1

sin (θ4s3)
(−r12 sin (θ2s2)+

r22 cos (θ2s2)),
1

sin (θ4s3)
(r11 sin (θ2s2)−

r21 cos (θ2s2)))

θ5s2 =atan2(
1

sin (θ4s4)
(−r12 sin (θ2s1)+

r22 cos (θ2s1)),
1

sin (θ4s4)
(r11 sin (θ2s1)−

r21 cos (θ2s1)))

θ5s3 =atan2(
1

sin (θ4s1)
(−r12 sin (θ2s1)+

r22 cos (θ2s1)),
1

sin (θ4s1)
(r11 sin (θ2s1)−

r21 cos (θ2s1)))

θ5s4 =atan2(
1

sin (θ4s2)
(−r12 sin (θ2s2)+

r22 cos (θ2s2)),
1

sin (θ4s2)
(r11 sin (θ2s2)−

r21 cos (θ2s2)))

Solutions sets:

[d1, θ2s1, θ3s3, θ4s1, θ5s3]

[d1, θ2s1, θ3s4, θ4s4, θ5s2]

[d1, θ2s2, θ3s1, θ4s3, θ5s1]

[d1, θ2s2, θ3s2, θ4s2, θ5s4]

Numerical verification confirmed that the inverse kine-
matics solutions are correct.

6.4 Example Solution - Robot with strictly solution

graph

The following example (Olson13) illustrates the necessity
of a graph when tracking dependency, where variables
have two independent parent variables, as shown in 6. DH
parameters are listed in Table 5. Olson13 is a 6-DOF robot.
The unknown variables are: [d1 d2 θ3 θ4 θ5 θ6]. The
known parameters are: [l3 l4 l5]

TABLE 5
Olson13 DH parameters

Link αN−1 aN−1 dN θN
1 −π/2 0 d1 π/2
2 π/2 0 d2 −π/2
3 π/2 0 l3 θ3
4 π/2 0 0 θ4
5 0 l4 0 θ5
6 π/2 0 l5 θ6

Forward kinematics:







r11 r12 r13 Px
r21 r22 r23 Py
r31 r32 r33 Pz
0 0 0 1






=

[

v1 v2 v3 v4
]

[

v1 v2
]

=







−c3s6 + c45c6s3 −c3c6 − c45s3s6
−c3c45c6 − s3s6 c3c45s6 − c6s3

c6s45 −s45s6
0 0







[

v3 v4
]

=







s3s45 c4l4s3 + d2 + l5s3s45
−c3s45 −c3c4l4 − c3l5s45 + d1
−c45 −c45l5 + l3 + l4s4
0 1







The variables are solved in the following order:

1) θ3, chosen solver: tangent

θ3s1 = atan2 (−r13, r23)

θ3s2 = atan2 (r13,−r23)

2) θ4, chosen solver: sine or cosine

θ4s1 = asin

(

1

l4
(Pz − l3 − l5r33)

)

θ4s2 = − asin

(

1

l4
(Pz − l3 − l5r33)

)

+ π

3) θ5, chosen solver: tangent

θ5s1 = atan2(r13 sin (θ3s2) cos (θ4s1)−
r23 cos (θ3s2) cos (θ4s1) + r33 sin (θ4s1),

r13 sin (θ3s2) sin (θ4s1)−
r23 sin (θ4s1) cos (θ3s2)− r33 cos (θ4s1))

θ5s2 = atan2(r13 sin (θ3s1) cos (θ4s1)−
r23 cos (θ3s1) cos (θ4s1) + r33 sin (θ4s1),

r13 sin (θ3s1) sin (θ4s1)−
r23 sin (θ4s1) cos (θ3s1)− r33 cos (θ4s1))

θ5s3 = atan2(r13 sin (θ3s2) cos (θ4s2)−
r23 cos (θ3s2) cos (θ4s2) + r33 sin (θ4s2),

r13 sin (θ3s2) sin (θ4s2)−
r23 sin (θ4s2) cos (θ3s2)− r33 cos (θ4s2))

θ5s4 = atan2(r13 sin (θ3s1) cos (θ4s2)−
r23 cos (θ3s1) cos (θ4s2) + r33 sin (θ4s2),

r13 sin (θ3s1) sin (θ4s2)−
r23 sin (θ4s2) cos (θ3s1)− r33 cos (θ4s2))

4) θ6, chosen solver: tangent

θ6s1 = atan2(−r11 cos (θ3s2)− r21 sin (θ3s2),

− r12 cos (θ3s2)− r22 sin (θ3s2))

θ6s2 = atan2(−r11 cos (θ3s1)− r21 sin (θ3s1),

− r12 cos (θ3s1)− r22 sin (θ3s1))

5) d1, chosen solver: algebra

d1s1 = Py + l4 cos (θ3s2) cos (θ4s1)− l5r23

d1s2 = Py + l4 cos (θ3s1) cos (θ4s1)− l5r23

d1s3 = Py + l4 cos (θ3s2) cos (θ4s2)− l5r23

d1s4 = Py + l4 cos (θ3s1) cos (θ4s2)− l5r23



12

6) d2, chosen solver: algebra

d2s1 = Px− l4 sin (θ3s2) cos (θ4s1)− l5r13

d2s2 = Px− l4 sin (θ3s1) cos (θ4s1)− l5r13

d2s3 = Px− l4 sin (θ3s2) cos (θ4s2)− l5r13

d2s4 = Px− l4 sin (θ3s1) cos (θ4s2)− l5r13

The following are the sets of joint solutions (poses) for
this manipulator:

[d1s3, d2s3, θ3s2, θ4s2, θ5s3, θ6s1]

[d1s4, d2s4, θ3s1, θ4s2, θ5s4, θ6s2]

[d1s1, d2s1, θ3s2, θ4s1, θ5s1, θ6s1]

[d1s2, d2s2, θ3s1, θ4s1, θ5s2, θ6s2]

The solution graph is shown in Fig. 6. d1, d2, and θ5 all
share two independently solved parent variables: θ3 and θ4.
Thus, it results in a dependency graph.

7 DISCUSSION

7.1 Related Work and Comparison

Previous research on inverse kinematics lays a good foun-
dation for IKBT. [3] used a rule-based pattern matching
approach (implemented as an expert system in LISP) from
which IKBT adapted the sin or cos solver, tangent solver,
and simultaneous equation solver. Similar to IKBT, that
system scanned a list of equations, and found the ones
matching patterns, then fetching the respective solutions.
Their method solved several commercial robots, including
the more complicated PUMA 560. Limitations of this work
include a hard coded framework for solution sequencing,
and dependence on obsolescent software. Comparatively,
IKBT uses very few rule-based solvers, indicative of more
efficient logical reasoning.

[15] used a similar approach to ours. Their system also
uses rule-based solvers implemented in LISP, though the
detailed rules or the source code were not made public.
The system of [15] solves equations sequentially and stops
working on a variable as soon as it is solved. In contrast,
IKBT’s assigner node picks a variable first, and tries the
entire toolbox for the chosen variable. We designed IKBT
this way to get the optimal solution, in the situation where
more than one solver applies to the same variable (choosing
different equations). IKBT ranks the solutions obtained and
chooses the best solution. [3], [15] did not show capability of
finding all possible solution or tracking dependency among
variables.

[4] used a different approach of converting the set of
kinematics equations into a univariate polynomial using
elimination techniques. It is effective in solving specific
robots. However, whether their methods could be applied
to other robots was not systematically tested. Also, because
it uses an approach unlike what human experts do, it is
harder to check the correctness of the solution or strategy:
IKBT’s toolbox contains only well known rules frequently
used by human experts.

[16]’s solver used a product-of-exponentials formula,
which doesn’t require D-H parameters, and is robust in

dealing with kinematics singularities. However, it only
showed the capability of handling numerical inputs and
rendering numerical solutions, and very limited solving
capability for complex robots (6-DOF robots ≈ 50%) .
Compared to [16], IKBT handles symbolic input, generates
closed-form solutions, and achieved much better success
rate with complex 5-DOF (100 %) and 6-DOF (80%) robots.
[17] used evolutionary algorithms to get an approximate
closed-form IK solution. By contrast, IKBT computes exact
symbolic closed-form solutions.

IKFast performs symbolic inverse kinematics analysis
as part of the OpenRAVE package [18]. Instead of general
solving techniques, IKFast adapts a case-specific approach.
It categories robots by their number of DOFs, and uses
DOF-specific hard-coded algorithms for arms with different
DOFs. IKFast generates a “dependency tree”. However,
a tree cannot represent the multiple independent depen-
dencies we found for some variables in some robots. The
graph-based representation generated by IKBT solves this
problem. We have tried to run IKFast to compare the
performance differences with IKBT, but we encountered
several problems: First, it requires the full installation of the
OpenRave suite. Second, its exclusive dependency on older
version of software packages is incompatible with current
versions. In order to run IKFast, one needs to downgrade
Python and related packages.

One distinguishing feature of IKBT is the generation of
solution graph of joint variables, though in some above-
mentioned studies ”dependency graph” was explored in
other unrelated context. As described in details in section
Solution Graph, dependency graph is essential to keep track
of the joint poses, and make sure the solutions sets are
complete and necessary. Complete means IKBT can find all
possible joint poses if the solution exists. Necessary means
that all solutions are unique, not duplicate to each other.
Dependency tracking was usually done by engineers, to the
best of our knowledge, IKBT is the first to automate this
process.

7.2 Perspectives

Building on top of the previous research, IKBT has several
defining advantages including applicability to any robot (up
to 6-DOF), generalized solving scheme, extensible toolbox,
modern and easy to implement language (Python), and
dependencies limited to only a few libraries. We expect these
characteristics will spur the wide adoption of IKBT into the
robotics research and education communities.

Rule-based solvers included in IKBT’s toolbox are com-
monly employed by human experts when solving inverse
kinematics problems. This is advantageous because IKBT
is not limited by robot configuration, specifically, it doesn’t
require three orthogonal axes in order to solve a robot.

IKBT’s Behavior Tree represents an interpretable strategy
- vital for judging many AI applications. This makes it
easier to examine the correctness of the solution and the
strategy formulating process. Although IKBT’s approach
costs more computing time than DOF-specific algorithms
(4 ms, according to [18], symbolic derivation only has to
be done once per robot arm design. The Behavior Tree is
easily modified and the solver toolbox is readily extensible.



13

Fig. 6. Olson13 Solution Graph.

Although all the results presented here were generated by
the BT of Fig. 2, it may be the case that a custom Behavior
Tree could solve additional robots or solve robots more
efficiently.

Behavior Tree has gained great success in game AI [19],
[20], and showed substantial possibilities in robotics re-
search [6], [8], [12], [21]. IKBT serves as a proof-of-concept of
solving high-cognitive problems with Behavior Tree. IKBT
mimics human experts’ logical reasoning process, and con-
structs a generalized solving scheme applicable to an entire
class of problems, using a small number of knowledge leafs.
While most of current AI work focuses on recognizing and
understanding scenarios, Behavior Tree emerges as a path to
strengthen an equally vital component - logical reasoning. In
IKBT, all knowledge-based solvers are coded by us, in other
words, we ”teach” the system about all the pre-existing
rules and tricks people use when solving inverse kinematics
problems. Given the current state of AI development, it
is feasible to let the system to learn the knowledge by
itself, through observing patterns and understanding the
meaning behind. Combining forces of recognition, learning,
and reasoning, we might be on our way to unlock the next
level of autonomy.

ACKNOWLEDGMENTS

We gratefully acknowledge support from National Science
Foundation grant 1637444 and support for Blake Hannaford
at Google-X / Google Life-Sciences / Verily in 2015.

REFERENCES

[1] P. I. Corke, “A robotics toolbox for matlab,” IEEE Robotics Automa-
tion Magazine, vol. 3, no. 1, pp. 24–32, Mar 1996.

[2] L. Kelmar and P. K. Khosla, “Automatic generation of forward
and inverse kinematics for a reconfigurable modular manipulator
system,” Journal of Robotic Systems, vol. 7, no. 4, pp. 599–619, 1990.
[Online]. Available: http://dx.doi.org/10.1002/rob.4620070406

[3] L. G. Herrera-Bendezu, E. Mu, and J. T. Cain, “Symbolic compu-
tation of robot manipulator kinematics,” in Proceedings. 1988 IEEE
International Conference on Robotics and Automation, Apr 1988, pp.
993–998 vol.2.

[4] D. Halperin, “Automatic kinematic modelling of robot manipula-
tors and symbolic generation of their inverse kinematics solutions
(extended abstract),” pp. 310–317, 1991.

[5] C.-U. Lim, R. Baumgarten, and S. Colton, “Evolving behaviour
trees for the commercial game defcon,” in European Conference on
the Applications of Evolutionary Computation. Springer, 2010, pp.
100–110.

[6] A. Marzinotto, M. Colledanchise, C. Smith, and P. Ogren, “To-
wards a unified behavior trees framework for robot control,” in
Robotics and Automation (ICRA), 2014 IEEE International Conference
on. IEEE, 2014, pp. 5420–5427.

[7] M. Colledanchise, M. Richard, and P. Ogren, “Synthesis of Correct-
by-Construction Behavior Trees,” in Intelligent Robots and Systems
(IROS 2017), 2017 IEEE/RSJ International Conference on, Sept 2017,
pp. 1482–1488.

[8] M. Colledanchise, A. Marzinotto, D. V. Dimarogonas, and
P. Ogren, “The advantages of using behavior trees in multi-robot
systems,” in International Symposium on Robotics (ISR), June 2016.

[9] M. Colledanchise, A. Marzinotto, and P. Ogren, “Performance
analysis of stochastic behavior trees,” in 2014 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2014, pp.
3265–3272.

[10] J. A. Bagnell, F. Cavalcanti, L. Cui, T. Galluzzo, M. Hebert,
M. Kazemi, M. Klingensmith, J. Libby, T. Y. Liu, N. Pollard,
M. Pivtoraiko, J. S. Valois, and R. Zhu, “An integrated system
for autonomous robotics manipulation,” in 2012 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. IEEE, 2012, pp.
2955–2962.

[11] K. R. Guerin, C. Lea, C. Paxton, and G. D. Hager, “A framework
for end-user instruction of a robot assistant for manufacturing,” in
Robotics and Automation (ICRA), 2015 IEEE International Conference
on. IEEE, 2015, pp. 6167–6174.

[12] D. Hu, Y. Gong, B. Hannaford, and E. J. Seibel, “Semi-autonomous
simulated brain tumor ablation with ravenii surgical robot using
behavior tree,” in 2015 IEEE International Conference on Robotics and
Automation (ICRA), May 2015, pp. 3868–3875.

[13] B. Hannaford, D. Hu, D. Zhang, and Y. Li, “Simulation results on
selector adaptation in behavior trees,” CoRR, vol. abs/1606.09219,
2016. [Online]. Available: http://arxiv.org/abs/1606.09219

[14] J. J. Craig, Introduction to Robotics: Mechanics and Control, 2nd ed.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1989.

[15] M. Wenz and H. Worn, “Solving the inverse kinematics problem
symbolically by means of knowledge-based and linear algebra-
based methods,” in 2007 IEEE Conference on Emerging Technologies
and Factory Automation (EFTA 2007), Sept 2007, pp. 1346–1353.

[16] I.-M. Chen and Y. Gao, “Closed-form inverse kinematics solver
for reconfigurable robots,” in Proceedings 2001 ICRA. IEEE Interna-
tional Conference on Robotics and Automation (Cat. No.01CH37164),
vol. 3, 2001, pp. 2395–2400 vol.3.

[17] F. Chapelle and P. Bidaud, “A closed form for inverse kinematics
approximation of general 6r manipulators using genetic program-
ming,” in Proceedings 2001 ICRA. IEEE International Conference on
Robotics and Automation (Cat. No.01CH37164), vol. 4, 2001, pp.
3364–3369 vol.4.

http://dx.doi.org/10.1002/rob.4620070406
http://arxiv.org/abs/1606.09219


14

[18] R. Diankov, “Automated construction of robotic manipulation
programs,” 2010.

[19] M. Nicolau, D. Perez-Liebana, M. ONeill, and A. Brabazon,
“Evolutionary behavior tree approaches for navigating platform
games,” IEEE Transactions on Computational Intelligence and AI in
Games, vol. 9, no. 3, pp. 227–238, Sept 2017.

[20] A. Johansson and P. Dell’Acqua, “Emotional behavior trees,” in
2012 IEEE Conference on Computational Intelligence and Games (CIG),
Sept 2012, pp. 355–362.

[21] P. Ogren, “Increasing modularity of uav control systems using
computer game behavior trees,” 08 2012.


	1 Introduction
	2 Work Flow and Architecture
	2.1 Work Flow
	2.2 Architecture

	3 Transformations and Solvers
	3.1 Transformations
	3.2 Rule-based Solvers

	4 Solution Graph
	4.1 Origins of Dependency
	4.2 Redundancy Detection and Dependency Tracking
	4.3 Grouping Variables
	4.4 Graph Representation

	5 Verification
	5.1 Solution Verification
	5.2 Pose Validation

	6 Results
	6.1 General performance
	6.2 Sample solutions PUMA 560
	6.2.1 Result Verification

	6.3 Example Solution - Robot without 3 intersecting axes
	6.4 Example Solution - Robot with strictly solution graph

	7 Discussion
	7.1 Related Work and Comparison
	7.2 Perspectives

	References

